Optimal Inequalities among Various Means of Two Arguments
نویسندگان
چکیده
and Applied Analysis 3 2. Lemmas In order to establish our main results we need two inequalities, which we present in this section. Lemma 2.1. If r ∈ 0, 1 , then g t − [ t2 t 1 2r /3 1 − 2r ( t 1 2r /3 1 t )] log t 1 − r ( t 1 2r /3 2 − t 1 2r /3 t2 − 1 ) > 0 2.1 for t ∈ 1, ∞ . Proof. Let p 1 2r /3, g1 t t1−pg ′ t , g2 t tg ′ 1 t , g3 t t 1−pg ′ 2 t , g4 t t g ′ 3 t , g5 t t3−pg ′ 4 t , g6 t t g ′ 5 t , g7 t t 1−pg ′ 6 t , and g8 t t g ′ 7 t , then simple computation yields g 1 0, 2.2 g1 t − [ 2t2−p 1 − 2r t1−p 1 − 2r p 1t p ] log t 1 − r p 2t2 − 1 − 2r t 1 − 2r t2−p − 1 − 2r t1−p − p 1 − r − 1, g1 1 0, 2.3 g2 t − [ 2 ( 2 − pt 1 − 2r p 1tp 1 − 2r 1 − p log t 2 1 − r 2 pt1 p − 1 − 2r p 2tp − ptp−1 ( 2rp − 4r − pt − 1 − 2r 2 − p, g2 1 0, 2.4 g3 t − [ 2 ( 2 − pt1−p pp 1 1 − 2r ] log t p ( 1 − pt−1 ( 2rp − 4r p − 4t1−p − 1 − 2r 1 − pt−p 2 1 − r 2 p1 pt − 1 − 2r ( p2 3p 1 ) , g3 1 6p − 2 − 4r 0, 2.5 g4 t −2 ( 1 − p2 − p log t 2 1 − r 2 p1 ptp − p1 p 1 − 2r tp−1 pp − 1tp−2 p1 − p 1 − 2r t−1 − p2 − 2rp2 6rp − 4r 7p − 8, g4 1 12p − 4 − 8r 0, 2.6 4 Abstract and Applied Analysis g5 t 2p 1 − r ( p 1 )( p 2 ) t2 p ( 1 − p2 ) 1 − 2r t − 22 − p1 − pt2−p − p1 − p 1 − 2r t1−p pp − 1p − 2, g5 1 2p3 2 1 − 4r p2 4 3 − r p − 4 8 27 ( −10r3 − 15r2 24r 1 ) > 0, 2.7 g6 t 4p ( p 1 )( p 2 ) 1 − r t 1 p ( 1 − p2 ) 1 − 2r t − 2 2 − p 21 − pt − p 1 − p 2 1 − 2r , g6 1 4p3 4 1 − 4r p2 8 3 − r p − 8 16 27 ( −10r3 − 15r2 24r 1 ) > 0, 2.8 g7 t 4p ( 2 p ) 1 p 2 1 − r t − 21 − p 2 − p 2t1−p p2 ( 1 − p2 ) 1 − 2r , g7 1 3 − 2r p4 2 9 − 8r p3 11 1 − 2r p2 8 3 − r p − 8 1 81 ( −32r5 − 400r4 − 888r3 − 412r2 1576r 156 ) > 0, 2.9 g8 t 4p 1 p 22 p ) 1 − r t − 2 1 − p 2 2 − p , 2.10 g8 1 2 1 − 2r p4 4 7 − 4r p3 − 2 3 10r p2 8 4 − r p − 8 8 81 ( −8r5 − 60r4 − 82r3 − 79r2 198r 31 ) > 0. 2.11 From 2.10 we clearly see that g8 t is strictly increasing in 1, ∞ . Therefore, Lemma 2.1 follows from 2.2 – 2.9 and 2.11 together with the monotonicity of g8 t . Lemma 2.2. If r ∈ 0, 1 , then g t [ rt 1−r /3 1 r − 2 t 1−r /3 r − 2 t r ] log t 2 1 − r ( t 1−r /3 1 − t 1−r /3 t − 1 ) > 0 2.12
منابع مشابه
Optimal inequalities for the power, harmonic and logarithmic means
For all $a,b>0$, the following two optimal inequalities are presented: $H^{alpha}(a,b)L^{1-alpha}(a,b)geq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ H^{alpha}(a,b)L^{1-alpha}(a,b)leq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. Here, $H(a,b)$, $L(a,b)$, and $M_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...
متن کاملSome New Inequalities for Means of Two Arguments
We prove certain new inequalities for special means of two arguments, including the identric, arithmetic, and geometric means. 2000 Mathematics Subject Classification. Primary 26D99, 65D32.
متن کاملOptimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means
We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)
متن کاملOn Certain Means of Two Arguments and Their Extensions
Inequalities for three means introduced by H.-J. Seiffert are obtained. Generalizations of these means, their basic properties, and inequalities satisfied by the new class of means are also included.
متن کاملVector Optimization Problems and Generalized Vector Variational-Like Inequalities
In this paper, some properties of pseudoinvex functions, defined by means of limiting subdifferential, are discussed. Furthermore, the Minty vector variational-like inequality, the Stampacchia vector variational-like inequality, and the weak formulations of these two inequalities defined by means of limiting subdifferential are studied. Moreover, some relationships between the vector vari...
متن کاملبررسی توزیع درآمد کشاورزان شهرستان ساوجبلاغ و عوامل مؤثر بر آن
The purpose of this study is to investigate the income distribution among the farmers of two districts of lowland and upland of Savojbolagh township of Tehran Province, Iran. The data of this study were collected by filling out questionnaires through interviews with 350 farmers who were selected by stratified random sampling. For analysis, such techniques as Gini Ratio, comparing the quintiles,...
متن کامل